Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Proposals to use technology to cool sea surface temperatures have received attention for the potential application of weakening a tropical cyclone ahead of landfall. Here, application of an ocean-mixing aware maximum potential intensity theory finds that artificial ocean cooling could drastically weaken tropical cyclones over high sea surface temperature and deep ocean mixed layer environments, especially for fast storm motion speeds. In contrast, realistic mesoscale numerical simulations reveal that massive regions - the largest evaluated here contains a volume of 2.1 × 104 km3and a surface area of 2.6 × 105km2- of artificially cooled ocean waters could weaken a tropical cyclone two days before landfall by 15% but only under the most ideal atmospheric and oceanic conditions. Thus, the fundamental theory provides an unreachable upper-bound that cannot be attained even by expending vast resources.more » « less
-
null (Ed.)Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage.more » « less
-
Abstract The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Last, a brief analysis of in situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally homogeneous surface types—which have been well documented by previous studies—are inappropriate for use near strong frictional heterogeneity.more » « less
-
The connection relating upper-ocean salinity stratification in the form of oceanic barrier layers to tropical cyclone (TC) intensification is investigated in this study. Previous works disagree on whether ocean salinity is a negligible factor on TC intensification. Relationships derived in many of these studies are based on observations, which can be sparse or incomplete, or uncoupled models, which neglect air–sea feedbacks. Here, idealized ensemble simulations of TCs performed using the Weather Research and Forecasting (WRF) Model coupled to the 3D Price–Weller–Pinkel (PWP) ocean model facilitate examination of the TC–upper-ocean system in a controlled, high-resolution, mesoscale environment. Idealized vertical ocean profiles are modeled after barrier layer profiles of the Amazon–Orinoco river plume region, where barrier layers are defined as vertical salinity gradients between the mixed and isothermal layer depths. Our results reveal that for TCs of category 1 hurricane strength or greater, thick (24–30 m) barrier layers may favor further intensification by 6%–15% when averaging across ensemble members. Conversely, weaker cyclones are hindered by thick barrier layers. Reduced sea surface temperature cooling below the TC inner core is the primary reason for additional intensification. Sensitivity tests of the results to storm translation speed, initial oceanic mixed layer temperature, and atmospheric vertical wind shear provide a more comprehensive analysis. Last, it is shown that the ensemble mean intensity results are similar when using a 3D or 1D version of PWP.more » « less
An official website of the United States government
